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Features of a pan balance that may support students’ developing
understanding of mathematical equivalence
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aDepartment of Mathematics, Illinois State University, Normal, Illinois, USA; bDepartment of Educational Psychology,
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ABSTRACT
Elementary school students struggle in interpreting the equal sign as
a symbol denoting equivalence. Although many have advocated using
a pan-balance scale to help students develop this understanding, less is
known about what features associated with this model support learning. To
attempt to control and examine these features, the investigators developed
a digital, pan-balance computer applet. This allowed for experimentally
manipulating three relatively grounded instructional conditions (involving
the core principle of making two sides the same; a balancing analogy; or
both, along with a dynamic demonstration), compared to a relatively idea-
lized control condition. Results indicated that the relatively more grounded
conditions promoted a relational understanding of mathematical equiva-
lence among 148 second- and third-grade students and further suggest
that providing dynamic, grounded support may not be as optimal as less-
enriched supports to promote students’ learning.
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Understanding mathematical equivalence denoted by the equal sign – the principle that two
sides of an equation represent the same quantity – in symbolic problems is vexing for many
young students. For decades, educational researchers (e.g. Behr, Erlwanger, & Nichols, 1980;
Kieran, 1980; Kilpatrick, Swafford, & Findell, 2001; Molina & Ambrose, 2008; Perry, 1991;
Renwick, 1932; Stephens, Ellis, Blanton, & Brizuela, 2017; Stephens et al., 2013) have docu-
mented young students’ difficulty with this concept. Although there has been some remarkable
work with children and adolescents on understanding the equal sign in the last decade,
figuring out the unknown in open equations continues to be a hurdle for many students
(Chesney et al., 2014).

It appears that students’ difficulties in the United States typically stem from the problem that they
perceive the equal sign as having an operational meaning (i.e. “to compute” or “to find the total”)
instead of a relational one (i.e. indicating a relation of equality or quantitative sameness between the
two sides of the symbol, see, e.g. Baroody & Ginsburg, 1983; Behr et al., 1980; Blanton et al., 2018;
Carpenter, Franke, & Levi, 2003; Falkner, Levi, & Carpenter, 1999; Kieran, 1981; McNeil & Alibali,
2005b; Rittle-Johnson & Alibali, 1999; Seo & Ginsburg, 2003). This notion of the equal sign as
a command to compute makes it difficult for young students when they see problems in nonstan-
dard equation formats, for example, in finding the unknown in equations where an unknown does
not appear alone in the final position (e.g. 2 + 3 + 4 = __ + 4; e.g. Li, Ding, Capraro, & Capraro,
2008). Students with an operational view of the equal sign tend to write 9 or 13 in the blank when
asked to find the missing number in this problem. Such nonstandard problems – with operations
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appearing on both sides of the equal sign – have reliably been found to reveal students’ problematic
views of the equal sign and are collectively known as equivalence problems.

Although the equal sign can denote multiple kinds of relational meanings (including symmetry,
identity, substitutive, reflexive, and transitive; see, e.g. Jacobs, Franke, Carpenter, Levi, & Battey,
2007; Skemp, 1986), symmetry – or the principle of sameness of the quantities on each side of the equal
sign – is one of the fundamental relational meanings in arithmetic and typically appears early in
students’ schooling. However, without this understanding, children oftentimes perceive the equal
sign as an operational symbol – as a call to compute – which leads to difficulties not only in solving
a variety of arithmetic problems, but also in limiting the development of algebraic thought. In fact,
acquiring a relational view of the equal sign has been found to be a predictor of student success with
solving equations in middle school (Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007) and thus
perceiving the equal sign as a relational symbol may be crucial for the development of algebraic
thinking (e.g. Byrd, McNeil, Chesney, & Matthews, 2015; Carpenter et al., 2003; Falkner et al., 1999;
Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006; National Council of Teachers of
Mathematics, 2000; Seo & Ginsburg, 2003). Given that understanding the equal sign indicates
a relation of equivalence in arithmetic and in algebra, it is with good reason that the Common
Core State Standards Initiative (National Governors Association Center for Best Practices & Council
of Chief State School Officers, 2010, 2012) has asserted the need for attending to mathematical
equivalence and understanding the equal sign, from as early as the first grade. Although researchers
have conducted remarkable work with children and adolescents on understanding the equal sign as
an indicator of sameness and equivalence in the last decade, figuring out the unknown in open
equations continues to be a hurdle for many students. For our current study, we focused specifically
on a key idea of mathematical equivalence: quantitative symmetry or sameness (see, e.g. Rittle-
Johnson & Alibali, 1999).

The pan balance as a concrete representation to support understanding of equivalence

Prior work on remedying the narrow operational view of the equal sign has emphasized, among
other things, the benefits of non-symbolic (e.g. real-life scenarios) and concrete contexts (e.g.
objects) to instantiate the meaning of equivalence (e.g. Barlow & Harmon, 2012; Caglayan &
Olive, 2010; Seo & Ginsburg, 2003; Sherman & Bisanz, 2009; Stacey & MacGregor, 1997). This
work has found that non-symbolic and concrete contexts allow students to understand a core
principle underlying mathematical equivalence – that both sides need to be the same.

The success of non-symbolic and concrete contexts can be attributed theoretically, at least in
part, to the extent with which they ground the idea to be learned (Belenky & Schalk, 2014). In the
simplest form, groundedness can be seen as the extent to which the context offers external support
for conceptual understanding, allowing learners to draw a parallel between the external support
provided by the context and the intended concept to be learned. The groundedness may be
afforded by the visual representation included in the support (e.g. objects, graphics, pictures),
actions observed or taken (e.g. observing the balance scale teeter-totter up and down or manip-
ulating the objects), verbal narrative that provides a conceptual link to something familiar (e.g.
reminding the student of a common action or object that links to the underlying mathematics), or
a combination of any of these cues.

One concrete manipulative has garnered unequal attention for supporting student understanding
of mathematical equivalence: the pan-balance scale. Hiebert and Carpenter (1992) suggested that
associating the fulcrum of the balance with the equal sign could act as a model for developing the
conceptual understanding of the equal sign. Moreover, seeing the equal sign as a symbol that
indicates quantitative sameness maps directly on the pan-balance model and thus may allow for
students to read arithmetic and algebraic problems as quantitative symmetry (e.g. Alibali & Nathan,
2007; Rasmussen, 1977) or in an unbalanced state, the lack of symmetry between the two sides. In
this way, the close proximity of the material and its features to the referent (equivalence of two sides)
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makes the pan-balance scale useful as a relatively grounded manipulative to support student learning
(assuming, of course, that when trying to make the point that adding numbers on both sides comes
to the same total, equivalent weights are used to balance the scale). In fact, national standards such as
the NCTM (e.g. 2000; see, e.g. https://illuminations.nctm.org/Activity.aspx?id=3530) and others (e.g.
Common Core State Standards Initiative, National Governors Association Center for Best Practices &
Council of Chief State School Officers, 2010, 2012) advocate for using this particular manipulative to
build understanding of the equal sign as an indicator of symmetry.

The fact that a physical balance scale, by its very nature, offers a dynamic1, external model of
equivalence, at least in part, explains its appeal and reasons for mention in both policy documents
and use as part of instruction. The pan-balance scale also seems intuitively appealing for educa-
tional purposes because of its iconicity and its closeness to students’ experiences (e.g. on seesaws,
see e.g. Mann, 2004). It is also widely represented in pre-service teacher guides (e.g. Baroody &
Coslick, 1998; Powell, 2012; Van de Walle, 2013), research-based elementary school textbooks (e.g.
Everyday Mathematics; also see Presmeg, 1997), and articles targeted for teachers (e.g. Leavy,
Hourigan, & McMahon, 2013; Mann, 2004). Perhaps what makes a concrete, pan-balance scale so
intuitive and valuable is that its mechanics represent the balancing act, allowing students to notice
the balanced state (or imbalanced state) as a result of sameness (or imbalance) between the
amounts on the two sides.

Not surprisingly, a number of studies have developed interventions using the pan-balance scale to
situate the equal sign within a relatable context and to support students’ success in solving
equivalence problems. Some of these interventions have used a physical dynamic balance scale
model with unitary weights in instruction (Alibali, 1999; Fyfe, McNeil, & Borjas, 2015; Mann,
2004; Perry, Berch, & Singleton, 1995), some have used a static balance scale model in pictures
(Filloy & Rojano, 1989; Howden, 1994; Ketterlin-Geller, Jungjohann, Chard, & Baker, 2007;
Linchevski & Herscovics, 1996; Vlassis, 2002; Warren & Cooper, 2005), some have used dynamic
digital balance scales (Magruder & Mohr-Schroeder, 2013; Rojano & Martinez, 2009; Suh & Moyer-
Packenham, 2007) and others have used balance gestures (Cui et al., 2017) to examine students’
success with solving equivalence problems. Moreover, some of these interventions were mediated by
an instructor, whereas some others were mediated digitally (e.g. using onscreen tutorials). These
studies have varied in terms of participant age and the length of the intervention. Regardless, the
findings from these studies highlight that demonstrating the act of balancing and employing balance-
scale models aid upper elementary and middle-school students’ understanding of mathematical
equivalence (with the exception of work by Vlassis, 2002, who reported mixed results).

What these studies do not tell us is what feature(s) of the scale, when used in instruction, provide
useful external supports for students’ developing understanding of equivalence. The various aspects
of external representations of equivalence all seem to work together during typical instruction that
involves using the pan-balance scale to support learning. However, it is plausible that certain
aspects – alone or in combination – may be responsible for instantiating the meaning of equivalence.

Drawing from prior work and our theoretical framing (see below), we identified four features of
external support that we hypothesized would be conducive to learning when using a pan-balance
scale.2 First, we identified objects to concretize quantities and connect them with symbols in
equations (e.g. 2 + 3 = 4 + 1 accompanied by 2 blocks and 3 blocks on one side and 4 blocks and
1 block on the other side). Second, because previous work indicates that reference to the balance
scale has long been included in mathematics curricula (e.g. Presmeg, 1997) and might be useful for
students (e.g. Mann, 2004), we included the balance context, by including two important relational
terms that typically accompany the use of the balance scale and may contribute to learning out-
comes: “same” (thereby highlighting the principle of making the two sides the same) and “balance”
(thereby highlighting the analogy of balancing the two pans). Third, because reference to the two
sides has supported student understanding of mathematical equivalence (Crooks, Alibali, & McNeil,
2011), we varied the visual depiction of two sides, to highlight that these would need to be made
equivalent. Fourth, and finally, we identified the presence or absence of the dynamic movement of
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a balance scale (i.e. observing the scale moving from an imbalanced state to a balanced state or vice
versa). In summary, by providing different instructional interventions that included or omitted these
features, we sought to determine which of these were linked to learning outcomes for students who
primarily held an operational view of the equal sign. Thus, in this study, we sought to address this
gap of not knowing which aspects of the pan-balance scale support developing understanding of
equivalence when using the pan-balance scale in instruction by identifying certain features, which we
varied.

Statement of the problem

In the present study, we tested whether the condition that most closely represented an actual,
dynamic physical balance scale, and thus was most grounded in terms of external representations
in our intervention, led to the most learning compared to other, relatively less-grounded, represen-
tations, presented on a computer, by isolating four features using affordances of technology.

Theoretical framings

Overview
To understand which features of the pan-balance scale serve to help young students overcome their
difficulty in solving equivalence problems and seeing the equal sign as a relational symbol, we first
review theoretical underpinnings of using concrete experiences to support learning. Here, we high-
light the role that concrete manipulatives play in promoting learning of abstract ideas and provide
a review of related theoretical accounts, which argue for a closer examination of external supports to
build student understanding of mathematical concepts. Next, we briefly discuss how affordances of
technology can offer concrete experiences through digital renditions of concrete manipulatives,
broadly known as digital or virtual manipulatives (e.g. Goldstone & Son, 2005; Manches &
O’Malley, 2012), and share some evidence on the virtual pan balance as an effective tool to support
student learning of equivalence.

Concrete experiences to support learning
Mathematics educators have long utilized concrete materials to facilitate meaningful abstraction of
mathematics concepts and procedures (e.g. Johnson, 2000; Sowell, 1989). The underpinnings of
using concrete experiences in instructional approaches is often traced to Bruner (1966), which
follows from classic theories of cognitive development, in which learning begins as a sensori-
motor process (e.g. Piaget & Inhelder, 1969). Bruner formally theorized a three-step instructional
approach, which specified the role of concrete materials and contexts in developing students’
understandings of abstract mathematical concepts and procedures. According to Bruner, new
concepts and procedures should be presented sequentially in three forms, gradually increasing the
abstractness of the representation for the intended targeted mathematical idea: enactive, iconic, and
then symbolic form. In the enactive form, the learner is introduced to a physical, concrete repre-
sentation of the concept so that the abstract concept is embedded in a concrete, non-symbolic,
informal, and relatable situation. Thereafter, the idea should be presented in an iconic form, which is
typically a pictorial representation of the enactive experience. And, finally, an abstract representation
of the concept or idea should be presented using symbols. Bruner explained that starting with
a concrete, physical form offers familiarity to the abstract idea and gradually removing this
familiarity in subsequent, more abstract, forms allows for making meaningful connections and
abstraction of the intended idea, thus supporting learning. We suspect that young students have
heard the term “balance” and have had opportunities to experience balancing in everyday life, even if
the pan-balance scale is novel to students.

More recently, other researchers (e.g. Fyfe, McNeil, Son, & Goldstone, 2014; Goldstone & Son,
2005; Lehrer & Schauble, 2002) have advanced and empirically examined Bruner’s approach, by
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beginning with concrete materials and then gradually removing contextual elements to reveal more
abstract representations. As an example, Fyfe et al. (2014) advocated for a “concreteness-fading
approach” to instruction in mathematics and science (also see Pea, 2004, for additional theorizing on
this point; Goldstone & Son, 2005, for additional empirical results on this point). They argued that
the progressive order, of initially introducing a concept using concrete experiences and then
gradually removing the concreteness in subsequent steps of instruction, allows for flexible under-
standing of the intended mathematical or scientific idea.

In a related theoretical approach, on the role of concrete representations and their abstract
counterparts, Belenky and Schalk (2014) discussed a continuum between groundedness and ideal-
ness, as a way to theorize about learning through using external representations that provide
a concrete framing for abstract ideas (and see Goldstone & Son, 2005, for a relevant discussion of
this issue in the digital space using simulations). They defined representations that are relatively
grounded as those that activate prior knowledge or past experience, which is grounded in a familiar
context. They defined representations that are relatively idealized as representations that may not be
related to, or provide, less familiar experiences (also see Hiebert & Carpenter, 1992). In the case of
a pan-balance scale, we chose four features – objects to concretize quantities, the balance context
incorporating relational language, visual depiction of two sides, and the opportunity to observe the
dynamic movement of the pan-balance scale – and varied these within a familiar context. In the case
of a pan-balance scale to represent equivalence, this means that the use of a dynamic balance scale,
along with a relational narrative targeting sameness, would be relatively grounded and might be an
optimal starting point because this would embed the abstract concept in a concrete, non-symbolic,
and relatable situation.

We drew from Belenky and Schalk’s ideas of groundedness and idealized representations to
design our interventions. We tested how these features, presented in a virtual environment, impacted
student understanding of mathematical equivalence. We posited that our most grounded interven-
tion, in theory, should be most supportive to students who lacked the relational understanding of the
equal sign. From this theoretical position, the condition with the most grounded support should lead
to more learning than other, relatively less grounded supports.

Concrete experiences and digital “manipulatives”3

With the advancement of technology, the term “concreteness” has been applied to digital renditions
of physical objects – broadly classified as digital or virtual manipulatives (Dorward, 2002). In this
way, virtual manipulatives are representations of concrete objects that can be manipulated on
computers or other electronic devices (e.g. Moyer, Bolyard, & Spikell, 2002; Sarama & Clements,
2009, 2016). Evidence suggests that digital representations may be more flexible because they are
devoid of the “external noise” that may accompany handling actual physical materials, which can be
responsible for increased cognitive load (e.g. Chandler & Sweller, 1991). As a bonus, digital
environments can be programmed to allow for providing specific and immediate feedback to the
student (e.g. Sarama & Clements, 2009). According to Sarama and Clements (2009), “computer
manipulatives can have just the mathematical features that developers wish it to have and just the
actions on it that they wish it to promote – and not additional properties that may be distracting”
(p.148). Additional affordances include taking advantage of the contiguity principle of multi-media
learning theory (e.g. Mayer & Moreno, 2002): by displaying the (digital) model or manipulative
alongside its symbolic representation, students may connect these more readily than when they are
separated, which typically is the case for physical manipulatives and their symbolic referents.

With respect to the balance scale, some evidence exists suggesting that using a virtual (dynamic)
balance scale can be as effective as a physical (dynamic) balance scale (Suh & Moyer-Packenham,
2007) in coming to see the equal sign as a symbol of equivalence. Given this, and the fact that the
digital space permits selective inclusion of aspects of groundedness, while linking the symbolic with
the concrete representations, we took advantage of these affordances. We designed our interventions,
identified four features that are typically conducive to learning when using the balance scale, and
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combined or varied these aspects of the pan-balance scale while keeping others constant across the
instructional conditions, to examine how the features we incorporated into our conditions impacted
students’ understanding of equivalence.

Dissenting evidence about the benefits of manipulatives and real-life contexts

Although ostensibly sensible, and previous empirical research demonstrates that concrete experi-
ences can be advantageous when they are grounded in familiar and meaningful contexts (Baranes,
Perry, & Stigler, 1989; Carraher, Carraher, & Schliemann, 1987), the notion that teaching abstract
ideas should begin with real-life contexts has also been problematized. The issue of concern about
teaching with concrete supports for learning concepts that are abstract is that these interventions
may draw the learner’s attention to the manipulative rather than the referents (Kaminski,
Sloutsky, & Heckler, 2009, 2013; Uttal, Scudder, & DeLoache, 1997), or may overload the learner’s
working memory, thereby increasing cognitive load (Mayer & Moreno, 2003), leading to failure of
these materials to support learning. Moreover, mathematics educators have cautioned about the
use of concrete manipulatives in teaching, warning that manipulatives do not speak for them-
selves and concreteness should not be interpreted as the ability to take physical actions on objects
because students may be able to act on the manipulative physically without ever making a mental
connection between their actions and the intended idea (Ball, 1996; Sarama & Clements, 2009).
Some researchers have even found that students were unsuccessful in making connections
between different representations – failing to transfer the arithmetic they performed using
manipulatives to paper-and-pencil tasks (Thompson & Thompson, 1990).

A consequence of this debate is that it leaves teachers not knowing what might make the most sense
for their students. In designing our conditions, we were mindful of these contradictory findings and
utilized affordances of technology to link representations of mathematical equivalence both with
mathematical symbols and with audio instructions, to investigate the impact of different types of
groundedness on students’ success in solving equivalence problems. In particular, our primary research
question was: Does using a grounded balance scale (i.e. a dynamic balance scale) in the virtual space
result in more learning when compared with less grounded representations of the balance scale, and do
these result in more learning compared to not experiencing a grounded representation at all?

Method

Setting and participants

A total of 171 second- and third-grade students from four public elementary schools in the
Midwestern United States participated in the study. Of those students, 20 were at the ceiling or
near ceiling at the pretest (solving 5 or 6 out of the 6 pretest equivalence problems correctly; see
Table 1); 2 were removed from analysis due to experimenter error (these students had the same first
name and were tested under the wrong condition), and 1 did not complete the intervention. Thus,
a total of 148 participants, with a mean age of 8.4 years (SD = .73), were considered for analysis. Of
these, 56% were female; 52% were White, 27% Black, 9% Hispanic, 1% Asian, and 11% multi-racial;
77% of participants were eligible for free-and-reduced lunch; 10% were English language learners;
and 10% had an individualized educational plan.

Research design and procedures

Each student participated in a total of three sessions on three separate days. In Session 1, students
were screened in their classrooms on simple addition and subtraction problems, using paper and
pencil. From the second session onwards, each student met individually during school hours either
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with the first author or with a trained research assistant (referred to hereonin as a trainer) and all
tasks, unless otherwise noted, were carried out on Apple MacBooks.

Session 2 had three phases: (a) pretest, (b) intervention on the computer using a game context,
and (c) immediate posttest. Before taking the pretest, students were randomly assigned to one of four
interventions: (1) Control (n = 32), (2) Core Principle (n = 38), (3) Balance Analogy (n = 38), or (4)
Dynamic Balance Scale (n = 40); we describe the interventions in detail in Materials. This session
lasted approximately 60 minutes, including a brief break.

Students took a delayed posttest, held a week after Session 2, in Session 3.

Materials

Screening test
In Session 1, all students took a 16-item paper-and-pencil test: 6 true-false items, 2 practice items, 4
addition problems, and 4 subtraction problems (see the Appendix). The screening test included
problems that are typically introduced in first grade (National Governors Association, 2012). The
purpose of the true-false items in the screening was to rule out the possibility that students were
already at ceiling and had a relational understanding of the equal sign. The purpose of including
addition and subtraction problems was to rule out the floor effect, that a lack of competence with
these basic operations may have resulted in a failure to solve mathematical equivalence problems
correctly (Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). The addition and subtraction
problems were given after the true-false problems to avoid priming the students to solve all problems
operationally. The test was not timed and lasted approximately 35 minutes. All participants, except
one, passed at least 50% of the addition and subtraction problems and were included for the
remainder of the sessions.

Pretest, immediate posttest, and delayed posttest
The pretest, immediate posttest, and delayed posttest (identical to the immediate posttest) consisted of
equivalence problems with one unknown (see Table 1) and students’ reasoning in finding the unknown.

The problems in the posttest were similar to those in the pretest, except that we added three transfer
items (see Table 1). These transfer items required understanding that the sum on both sides of an
equation had to be the same. These items were included because they differed in format; none of the
addends on the left side of the equation were repeated on the right side (i.e. in 6 + 2 + 3 = 7 + _) and the
other two items either used two operations (i.e. 8 + 3–2) or were missing an addend on the left side of the
equation (i.e. 5 + 1 + _) (Lindvall & Ibarra, 1980).

In addition to the problems presented in Table 1, to assess students’ explicit understanding of the
meaning of the equal sign, students were presented with the equal sign symbol on the computer
screen. The trainer pointed to the screen and asked the following questions, each separated by the
student’s response: (1) What is the name of this symbol? (2) What does this symbol mean? (3) Can it
mean something else? Following the last question, students were presented with a piece of paper and
asked (4) If you were to show or explain to a friend or someone who doesn’t know what the equal

Table 1. Equivalence problems used in the pretest, posttest, and delayed posttest.

Problem Type Pretest Posttest (and Delayed Posttest)

Practiced 2 + 5 = 4 + _ 2 + 4 = 5 + _
3 + 6 = _ + 8 3 + 5 = _ + 7

7 + 2 + 5 = _ + 5 7 + 2 + 4 = _ + 4
3 + 2 + 5 = 3 + _ 5 + 4 + 3 = 5 + _
4 + 2 + 7 = _ + 7 8 + 2 + 4 = _ + 4
5 + 3 + 4 = 5 + _ 2 + 3 + 5 = 2 + _

Transfer 6 + 2 + 3 = 7 + _
8 + 3–2 = 8 + _

5 + 1 + _ = 6 + 2
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sign means, how would you explain it to them? Could you draw or write something that you would
use so they could understand what the equal sign means? The first three questions were based on
those used by previous researchers (Baroody & Ginsburg, 1983; Knuth et al., 2006). The last question
was added to elicit other potential understandings of the equal sign, if they existed.

At the posttest, to examine if students had any shifts in how they defined the equal sign after the
intervention, they were asked: “After playing the game [intervention], do you think the equal sign
can mean something else?”

To assess students’ perceptions of the equal sign as a symbol separating the two sides of an
equation (Matthews & Rittle-Johnson, 2009), students were shown four options (see the Appendix).
The trainer said “Here is a number sentence and it has two sides.” The trainer then pointed to each
of the choices that depicted the possible separation of the two sides by a vertical line and said, “Some
students thought this is how we should break the number sentence into two sides, so this (circling
the side to the left of the vertical line) is one side and this (circling the side to the right of the vertical
line) is the other side. Can you take a look at all of these choices and circle the choice that you think
breaks the problem correctly into two sides?”

Intervention materials: overview

The intervention was delivered on a computer within the context of a game. The intervention
consisted of one of three instructional conditions – each with different types of grounded support
(see Table 2) – or one control condition. We designed the Control condition to be the most idealized
and the Dynamic Balance-Scale condition relatively to be the most grounded. The other two in-
between conditions (Core Principle and Balance Analogy) provided different sorts of groundedness.

The Control condition simply presented students with practice on the symbolic problems on the
computer screen to find the missing number. The Core Principle condition focused on assessing
whether the blocks that were present on the two distinct sides of the static table were the same. The
Balance Analogy condition instructed students to make the two sides, represented by two separate
pans with blocks, balanced so they became the same. The Dynamic Balance-Scale condition showed
a dynamic balance scale, with the two sides of the scale attached through a fulcrum. The scale
teetered up and down, based on which side had more blocks, then balanced when an equal number
of blocks was present on both pans. The meaning of balancing a scale was discussed during the
introduction phase for students in the Dynamic-Balance-Scale and Balance-Analogy conditions only.

Table 2. The features that appeared in each of the conditions.

Features that Varied Across Conditions

Condition Symbols

Visual
Presence
of Blocks

Balance Context,
with relational

language italicized

Visual
Depiction of 2

Sides
Movement Depicting

Balancing

Control e.g. 3 + 4 + 2 = 3 + __ (plus
reading the symbolic problem)

Core Principle e.g.
3 + 4 + 2 = 3 + __ (plus
reading the symbolic problem)

Yes Make the 2 sides
the same

A static table,
no pans

Balance Analogy e.g.
3 + 4 + 2 = 3 + __ (plus
reading the symbolic problem)

Yes Balance the 2 sides
so they become the
same

A static table,
with 2 pans

Dynamic Balance
Scale

e.g.
3 + 4 + 2 = 3 + __ (plus
reading the symbolic problem)

Yes Balance the scale A pan-balance
scale

The pan with the greater
number of blocks goes
down; if the same
number in both pans, the
scale teeters to balance

Empty cells indicate that the intervention condition did not contain that feature.
Also note that the symbols were consistent across all conditions.
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The students in the Core-Principle and Control conditions were not shown a balance scale, nor was
the term “balance” used with them.

Enacting the intervention: introducing the game, then playing the game

Introducing the game
Once the student put on the headset and the environment was launched, an animated character
appeared and was introduced by the voice narration as a smart cat named Marty that likes to play
with numbers. After this, students in the Balance-Analogy and Dynamic-Balance-Scale conditions
saw a static pan-balance graphic as part of the introduction and were asked if they knew what
a balance scale was (see Figure 1).

For the students in the Dynamic Balance-Scale condition, the narration (showing a balance scale on
the screen) said that the scale gets balanced when the number of blocks in the green pan (the left pan)
is the same as the number of blocks in the red pan (the right pan). The narration then continued and
told the student that the green pan would be Marty’s and the red pan would be the student’s (with the
student’s name appearing on the red pan). The animation then dropped one block on the left side and
three blocks on the right side, replacing the green equal sign on the fulcrum with a lock. Following this,
the text and accompanying voice-over asked the student “if you put one block on Marty’s side and 3

Figure 1. Introduction to the balance scale in the Dynamic Balance-Scale and the balance-Analogy conditions.

Figure 2. Initiation of the analogy in the Dynamic Balance-Scale and the Analogy conditions.
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blocks on your side, how will the scale move?” The student was prompted to click on one of three
options that indicated what would happen in the display (see Figure 2): Marty’s pan will go down,
nothing will go down, or your pan will go down. As the student moved the cursor, the student could
hear the audio prompts. When students in the Dynamic Balance-Scale condition answered correctly,
(1) the balance scale moved and the pan with more blocks went down as an animation, (2) the lock
icon displayed at the fulcrum was replaced with a not-equal symbol (≠), and (3) the narration
explained that the scale is not balanced because the green pan does not have the same number of
blocks as the red pan, followed by “this side (zooming in on the left side) is not the same as this side
(zooming in on the right side).” If the student clicked on an incorrect option, the narration along with
accompanying visual cues offered why that choice would not make sense and prompted the student to
try again. This loop continued until the student clicked on the correct option – the student’s pan going
down – followed by the audio and visual feedback for the correct response. Thus, the introduction
phase allowed for familiarizing the students with the functioning of the virtual balance scale. This also
assured that the student could follow the directions given through the audio prompt. In instances
where a student stared at the screen or did not respond, the trainer restated the prompt and suggested
that the student could move the mouse over the three responses and click on what they thought would
happen to the scale.

Students in the Balance-Analogy condition received similar verbal information during the
introduction and saw a static pan balance; however, they did not see the scale move. Students in
the Core-Principle condition and the Control condition did not have access to the balance analogy
and did not see the pan balance as a dynamic model or as a static graphic. All conditions, but the
Control, were shown blocks. All conditions provided students with audio instructions to familiarize
them with how to proceed. The students interacted with the computer screen using an external
mouse to click or hover over the instructional prompts or to move to the next screen and this
instruction was self-guided.

Playing the game
The intervention launched immediately after the introduction. All four versions had Marty, the
animated cat, and a bingo machine, which generated the numbers for each side. Written prompts
appeared on the screen; hovering the cursor over the prompt resulted in playing the audio
accompaniment to the prompt. Students were told that they and Marty would play a game in
which they each take turns using the bingo machine to get blocks for their sides. The prompt from
the game told the students that the goal of the game was to help Marty balance the [scale, two pans,
or two sides (based on the instructional condition)], or to find the number that should go in the
blank (in the Control condition). The three instructional conditions (i.e. all except the Control
condition) also showed two distinct sides and blocks to represent quantities on both sides during the
instruction. The student and the animated character (Marty) took turns clicking on a bingo machine
to draw out the numbers for their respective side of the pan-balance scale (on Marty’s turn, the bingo
machine rolled automatically). Marty only appeared on the screen once in the beginning and once
after every turn ended. Thus, the role of Marty was simply to act as a character in charge of one side
of the equation and then in the end to rejoice as the scale or the equation was balanced or made the

Table 3. Problems presented during the intervention: play
session.

Problems

5 = _ + 3
2 + 5 = _ + 3
3 + 4 + 2 = 3 + _
4 + 5 + 2 = _ + 2
8 + 3 + 2 = 8 + _
2 + 6 + 3 = _ + 3
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same. Although the numbers for each problem appeared to emerge randomly from the bingo
machine on the screen, they were the same for each student (see Table 3, for a list of the problems).
All students had two trials to find the number that should go in the blank and were given
appropriate audio feedback if they picked an incorrect number. Screen shots of each of the four
conditions are shown in Figure 3. Figure 3(a) shows the initial setup for each of the four conditions.
For example, in the Dynamic Balance-Scale condition, students saw blocks resting on the pans of
a balance scale. The problem appeared on the screen and the accompanying audio asked the student
if the two sides of the scale were balanced. Figure 3(b) shows what happened next for each of the
four conditions. Following the example for the Dynamic Balance-Scale condition, students were
asked to balance the scale. Correct responses received auditory and dynamic visual feedback, as the
scale adjusted to demonstrate balance (Figure 3(c)). The audio track verbalized the symbolic
statements, for example, stating that “3+ 4 + 2 is the same as 3 + 6,” followed by counting each
collection, and “9 is the same as 9. 9 equals 9.” The equal sign was animated, and zoomed in and out
at the moment when the audio said “the same as” and “equals.”

Instruction in the Balance-Analogy condition was comparable to the Dynamic Balance-Scale
condition, except that the balance scale was absent and was replaced with a set of side-by-side
pans (see column 2 in Figure 3(a)) to suggest symmetry or asymmetry and the corresponding
prompt requested that students “balance the two sides” (column 2 in Figure 3(b)).

Instruction in the Core-Principle condition was comparable to the Balance-Analogy condition,
except that the two pans were absent, and the prompt used relational language by asking participants
to make “both sides the same” without any reference to “balancing” the two sides, which was the
relational language used in the Balance-Analogy condition.

In the Control condition, the problems were presented only symbolically. Students were
prompted to find the number that should go in the blank.

ControlCore PrincipleBalance AnalogyDynamic Balance Scale

a. Receiving initial blocks

b. Asking how many more blocks are needed to balance the scale, balance the two sides, achieve sameness, or get a correct answer

c. Receiving final feedback when the number is correct

Figure 3. Instructional applet screenshots. (a) Receiving initial blocks. (b) Asking how many more blocks are needed to balance the
scale, balance the two sides, achieve sameness, or get a correct answer. (c) Receiving final feedback when the number is correct.

Conditions show different types of grounded support from left (most grounded) to right (least grounded, or most idealized).
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Data sources and scoring

Students’ responses, including their reasoning for how they arrived at their answers, served as data sources.

Scoring the screening test
The true-false, addition, and subtraction problems were scored as either correct or incorrect.

Scoring responses to equivalence problems
Equivalence problems were scored as correct if the student provided both a correct answer (we
accepted answers that were ±1 from the answer as correct because we were interested in changes in
relational understanding and not fluency in addition, see e.g. McNeil, 2007) and a relational strategy
to justify how they attained the answer. To establish inter-rater reliability, two coders (blind to the
condition) independently coded students’ strategies as relational or not (for both the pretest and the
posttest responses). Inter-rater agreement at the pretest (98%) and posttest (99%) was high. Because
we used 6 problems involving one unknown, the scores for this type of problem ranged from 0 (no
accurate response generated along with no relational reasoning) to 6 (all correct, with relational
reasoning). Students also solved 3 transfer equivalence problems during both posttests (immediate
and delayed). Thus, scores on transfer items ranged from 0 (for none correct) to 3.

Scoring responses for definition of the equal sign
We categorized students’ responses to each of the four questions assessing their definitions of the
equal sign based on a system used by McNeil and colleagues (Knuth et al., 2006; McNeil & Alibali,
2005a). Occasionally, students provided both a relational and an operational meaning; in these cases,
responses were coded as relational because we had some indication that the student was working
with a relational meaning. When students simply repeated the word “equal,” without any additional
information, to describe the equal sign, the response was coded as ambiguous because merely
restating the term did not offer a clear indication of what views the student held of the equal sign.
Inter-rater agreement on assigning a category to students’ definition at pretest and at posttest were
high (96% and 95%, respectively) and discrepancies were discussed and resolved. Table 4 provides
some examples observed of students’ responses.

Scoring responses for identifying two sides of an equation
Relying on Matthews and Rittle-Johnson’s (2009) measure, we gave students multiple-choice items to
indicate the two sides of the equation. Responses were coded as correct when the student circled the
option that correctly specified the two sides. For example, in the problem 4 + 1 = 2 + 3, the correct option
identified one side as 4 + 1 and the other side as 2 + 3, separated by a vertical bar (see the Appendix).

Results

Our primary research question was “Does using a grounded balance scale (i.e. a dynamic balance
scale) in the virtual space result in more learning when compared with less grounded representations

Table 4. Student response categories indicating definitions of the equal sign.

Category Examples

Relational “It means the same as.” “Same amount.” “Like balanced” [with a balancing hand gesture]
Partial Relational “It [means] the same number. So, 9 equals 9.” “Like 54 and 54 are the same … you are supposed to put

equal in it.”
Operational “It means total.” “Where the answer goes.” “It tells you the answer.”
Ambiguous “It can mean something else but I don’t know how to say it … it means eeequal [stressing the emphasis on

e].” “Like 2 plus 3 equals, or it could be opposite,” “ It is like (paused) equaling the numbers … could be
equals anything”

Other “I don’t know,” shook head–implying no, or gave an irrelevant response
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of the balance scale, and do these result in more learning compared to symbolic problems, relatively
devoid of any grounded representation?” To answer this question, first, we present results about
whether the students in the four conditions were similar before the interventions. Second, we
provide descriptive evidence about the effectiveness of the interventions on the outcome measures
at the posttest and delayed posttest, with the groups combined. Third, to examine whether, as
hypothesized, our most-grounded condition (Dynamic Balance Scale) led to more learning than the
less-grounded (Balance Analogy and Core Principle) intervention conditions, we categorized stu-
dents’ improvement into levels of learning; we provide illustrative, qualitative data about changes in
student understanding to highlight the nuances in student levels of learning; and we conducted
ordered logistic regression to provide converging evidence about the varying effectiveness of the
different conditions.

Comparability of the four conditions during the screening measure and the pretest

Screening measure
During the in-class screening test, students scored an average of 3.12 (SD = 1.33) correct out of 6
true-false problems, 3.17 (SD = 0.88) correct out of 4 addition problems, and 2.9 (SD = 0.96)
correct out of 4 subtraction problems. One-way ANOVAs revealed that students’ performance did
not differ significantly across the four conditions in terms of mean scores on true-false [F
(3,144) = 0.69, p = .56], addition [F(3,144) = 2.05, p = .11], or subtraction problems [F
(3,144) = 0.88, p = . 45].

Pretest: equivalence problems
At the pretest, students solved only 4% of equivalence problems correctly (a mean of .22 out of 6,
SD = .65). Most (86% of 148 students) did not solve even one problem correctly4. However, students’
performance on equivalence problems did not differ significantly across the four conditions, Welch’s
ANOVA [F(3,100) = 0.3, p = .8)].

Pretest: defining the equal sign
At the pretest, the overall percentage of students who gave a relational definition was low (8.1%),
with the majority of students giving an operational definition (73%). The remaining students either
provided an ambiguous definition (5.4%) or stated that they did not know what the symbol meant or
gave a response that was not relevant (4.7%, categorized as “other”). Students’ ability (or lack of
ability) to define the equal sign relationally did not differ significantly by condition, Fisher’s Exact
(p = .90).

Pretest: identifying the two sides of an equation
At the pretest, only 10% of students correctly identified the two sides of the equation in both
problems. The percentage of these students did not differ across conditions, Fisher’s Exact (p = .1).

Table 5. Performance on each of the three components of the outcome measure, before the intervention, by instructional
condition.

Instructional Condition

Component of the Outcome
Measure How Measured

Dynamic Balance
Scale

Balance
Analogy

Core
Principle Control

Equivalence problems M correct (SD) 0.20 (0.52) 0.18 (0.51) 0.21 (0.74) 0.31
(0.82)

Defining the equal sign % who
defined = relationally

15.0% 15.8% 13.2% 25.0%

Identifying the two sides % who got both correct 2.5% 7.9% 13.2% 18.8%
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Table 5 provides students’ pretest performances by condition on the three components of under-
standing the equal sign.

Summary of results for the screening measure and pretest
Taken together, these results indicate that students’ performances did not differ significantly across
the four conditions on any type of problems given during the screening measure or on the pretest.
Thus, the four groups were comparable prior to the intervention.

Evidence of intervention effectiveness: combining across instructional conditions

To determine whether the interventions were effective, we evaluated students’ performances at an
immediate posttest. We also conducted a delayed posttest to determine whether student performance
remained consistent or whether there was a significant drop-off after one week.

Immediate posttest: equivalence problems
Overall, students performed better at the posttest. Furthermore, students’ performance on transfer
problems correlated significantly and positively with their performance on practice problems
(rho = .79, p < .001). Before doing any planned comparisons, because of both the consistency in
performance between the practice problems and transfer problems, and our interest in promoting
and documenting improvement, we analyzed students’ performance on gain in practice (from pretest
to immediate posttest) and transfer scores, combined. For ease of reference, we refer to these
combined gains as “composite gain score” (see Table 6).

Immediate posttest: defining the equal sign
Students defined the equal sign relationally in greater percentages at the posttest compared to their
attempts at the pretest, from 8.1% to 28.4% at the immediate posttest, McNemar’s χ2 [(1, 148) = 49.1, p
< .001]; likewise, the percentage of students who gave an operational definition decreased from 73%
to 34%.

Immediate posttest: identifying the two sides of an equation
The percentage of students who identified the two sides of an equation relationally increased signifi-
cantly from the pretest (10%) to the immediate posttest (28%), McNemar’s χ2 [(1, 148) = 12.6, p < .001].
These results indicate that students’ performance improved at the immediate posttest.

Table 6. Performance on immediate and delayed posttest by instructional condition.

Instructional Condition

Dynamic Balance Scale
(n = 40)

Balance Analogy
(n = 38)

Core Principle
(n = 38)

Control
(n = 32)

Performance M SD M SD M SD M SD

Immediate posttest practice problems 2.50 2.44 3.71 2.50 2.76 2.63 0.78 1.62
Immediate posttest transfer problems 0.50 0.78 0.84 0.89 0.82 0.95 0.19 0.54
Delayed posttest
practice problems

2.46 2.53 3.20 2.75 2.80 2.56 1.05 1.79

Delayed posttest transfer problems 0.51 0.81 0.84 0.88 0.74 0.91 0.25 0.56
Gain on immediate posttest practice
problems

2.30 2.42 3.53 2.52 2.55 2.56 0.47 1.22

Composite gain on immediate posttest* 2.80 3.05 4.37 3.19 3.37 3.39 0.66 1.56
Composite gain on delayed posttest* 2.77 3.21 4.12 3.52 3.33 3.34 1.00 2.24

*This score is a composite of gains on the practice problems plus transfer problems solved correctly
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Delayed posttest
We found no significant differences between performance on the immediate posttest and perfor-
mance on the delayed posttest (Wilcoxon rank-tests, all ps>.05), suggesting no meaningful decre-
ment in performance after one week.

Examining the effects of condition on levels of learning

Improvement on equivalence problems at the posttest
Although, in general, students improved after the intervention, they did not do so equally across all
four conditions. Descriptive results indicate that the mean score for students in the Balance-Analogy
condition were the highest, followed by students in the Core-Principle condition, and then students
in the Dynamic Balance-Scale condition. The mean scores of students in all three instructional
conditions were higher at the posttest than those in the Control condition and statistical analyses
revealed significant differences in gain scores across the conditions, Welch’s F[(3, 78.13) = 17.577,
p < .001]: students in the three instructional conditions gained significantly more than students in
the Control condition (Games-Howell post-hoc comparison, p < .05, see Table 6).

Categorizing levels of learning on equivalence problems
The frequency distribution of students’ performance on equation-solving was skewed, which is
typical in studies of children’s performance on such problems (McNeil, 2007). This is usually
handled by categorizing students’ responses binomially in terms of whether or not students solved
at least one of the problems correctly. Although this allows researchers to assess whether students
learned or not, it does not allow us to evaluate gradations of learning. Therefore, given the nature of
the data and the precedent set by previous research (e.g. McNeil, 2007; McNeil, Rittle-Johnson,
Hattikudur, & Peterson, 2010; Perry, Church, & Goldin-Meadow, 1988), we examined both logical
and empirical ways to classify outcomes into levels of learning. We classified students’ performance
ordinally into three levels based on the extent to which the students correctly solved the practiced
and transfer problems: (a) none, demonstrating no gain on the practiced problems nor any correct
on the transfer problems (n = 61); (b) emerging, demonstrating some gain, but not more than
a combined gain of four on practice and transfer problems (n = 42); and (c) adequate, demonstrating
a minimum gain of at least five on the composite scale, with, in particular, a gain of at least four on
practice problems and at least one on transfer problems (n = 45). We settled on this cutoff because
this would likely rule out the possibility that the students guessed or that their correct responses were
due to chance. In addition, the cutoffs emerged empirically; the vast majority of students who had
a gain of at least four at the posttest (adequate improvement) also answered at least one transfer
problem correctly (n = 45 out of 53), which was not the case for the vast majority of students who
solved up to four practice problems alone (only 9 out of 36 students who did not answer at least four
posttest problems correctly also answered a transfer problem correctly, indicating that their perfor-
mance was, indeed, emergent). These criteria allowed for the examination of nuanced patterns of
learning with respect to the different conditions5.

Illustrative cases of student responses
Next, we provide some typical, illustrative cases of 6 students’ responses, to highlight the differences
across these three levels of learning (2 students at adequate, 2 at emergent, and 2 at none). In each
case, we provide a description of students’ reasoning and strategy at the pretest to the problem
7 + 2 + 5 = _+ 5 and then their reasoning and strategy at the posttest for the comparable problem
7 + 2 + 4 = _ + 4. Occasionally, we provide detail on additional problems, for clarification. We note
that some students in all three instructional conditions provided relational reasonings for some
problems (indicating that some instruction was better than business-as-usual, represented by the
Control condition). As a reminder, the interventions did not provide instruction on how to solve the
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problem, leaving students to use their own strategies in making the scale balanced, making two sides
balanced, or making both sides the same.

Adequate learning: Elena. At the pretest, Elena arrived at 14 for her answer (in response to the
prompt “what number should go in the blank to make this number sentence true?”). In response to
the follow-up prompt of “you put 14 in the blank, can you tell me how you figured out that 14
should go in the blank?” she was quick to say “because 7 plus 2 plus 5 equals 14.” At the posttest,
Elena put 9 in the blank. She responded “because 7 plus 2 plus 4 equals 13. And 9 (pause) … 4 does
not equal 13, so we need to add 9 to make 13 to make it the same.”

Adequate learning: Kaleb. At the pretest, Kaleb summed all the addends before the equal sign, “I added
5 plus 2 … equals 7 and 7 plus 7 equals 14, so 14.” At the posttest, he said “7 plus 2 plus 4 is 13 and…
I added 7 plus 2 together… is 9. There is already 4 on both sides, so it would be… then it would be 9 + 4.”
Kaleb noticed the equal addends, so he summed together the addends on the left of the equation that did
not appear on the right side of the equation.

Emergent learning: Amy. At the pretest, Amy said the answer was 14 and provided the following
reason: “I counted in my head … I counted these (pointing to the numbers on the left side of the
equal sign).” In defining the equal sign she said, “like find out the answer … you find it and make it,”
which indicated an operational view of the equal sign. At the posttest, she solved 3 of the 6 problems
correctly. Amy stated that the solution was 9, but she did not provide clear evidence about why 9
should correctly solve the problem. She said “you can count these (pointing to 7 and 2) and solve the
numbers by using tens.” On the next problem, 5 + 4 + 3 = 5 + _, she reverted to adding all of the
numbers that preceded the blank and said that 17 should go in the blank. Her response “because… 9
is bigger than 17” did not provide a clear reasoning. She also solved all of the transfer problems
incorrectly. Note that we categorized this student as emergent because she demonstrated some, but
not enough to be considered adequate, relational reasoning.

Emergent learning: Camilla. Camilla did not solve any problem correctly on the pretest and
demonstrated an operational understanding when interviewed about her understanding of the equal
sign. On the pretest she said “because 1 counted 5 and 7 … 7 plus 5 equals 12 and plus 2 … and then
plus 2 is 14.” On the posttest, she gave 13 as her solution, which was incorrect. However, she solved
three other problems correctly on the posttest, when the blank was in the final position in the
problem, but solved all other problems incorrectly.

Both Camilla and Amy, and the other students whom we classified as emerging, showed some
gain at the posttest over their pretest performance, and their solutions, reasons, and perceptions of
the equal sign showed emerging – but not solidly convincing – signs of being relational; they did not
have a composite gain of at least 5 problems, including at least 1 transfer at the immediate posttest.

None (no evidence of learning): Sasha. At the pretest, Sasha gave 13 as the answer and she responded
to the prompt to explain how she figured out that 13 was the answer by saying “7 8 9 10 11 12 and …
.” She defined the equal sign by using an example, “5 plus 5 eeequals to 10.” During the intervention,
after getting a problem incorrect using the balance scale, she figured out that, to balance the scale, both
sides needed to have the same number of blocks and she was able to work through the problems
presented in the game. However, at the posttest, she resorted to adding all the numbers and relied on
the strategy she had used before, “7 8 9 10 11 12 13 … 13 (pointing to the blank).”

None (no evidence of learning): Abby. Like Sasha, Abby had an operational view at the pretest and
responded to the problem by stating, “I did this in my head. I said 7 plus 2 equals 9 and then 9 plus 5

Table 7. Percentage of participants in each level of learning by condition at the posttest.

Levels of Learning

Instructional Condition

Dynamic Balance Scale (n = 40) Balance Analogy (n = 38) Core Principle (n = 38) Control (n = 32)

None* 45% 16% 37% 63%
Emerging 28% 37% 24% 34%
Adequate 28% 47% 40% 3%

*Note. None is the same as no learning
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equals 14.” During the Dynamic Balance-Scale intervention, unlike Sasha, Abby seemed quick to get
how many blocks were missing to complete the number sentence. However, at the posttest, Abby,
much like Sasha, added together all of the addends preceding the equal sign. When prompted, she
said “7 plus 2 equals 9 and 9 plus 4 equals 14.”

As is clear from these cases, we found that students made varying degrees of progress in their
understanding of equivalence. Table 7 shows the percentage of students in each of the four
conditions who exhibited different levels of learning. We found that students’ level of learning was
related to condition, χ2(6, 148) = 24.07, p < .001.

To determine whether different conditions were systematically related to different levels of
learning, and to identify influences of demographics on the levels of learning, we conducted an
ordered logistic regression with three levels of the outcome variable (i.e. none, emerging, and
adequate) and the intervention condition as a factor with four levels (i.e. Dynamic Balance Scale,
Balance Analogy, Core Principle, and Control). We chose ordered logistic regression because: 1) the
distance between the three categories of our outcome variable may not be the same (i.e. the distance
between “none” and “emergent” might not be the same as the distance between “emergent” and
“adequate”), and 2) it allows us to predict what factors influence the levels of learning. To conduct
our planned comparisons, we considered two models, one with the Control condition as the
reference, to contrast our most idealized condition with each of the other three conditions that
were grounded in one way or another. In our second model, we used Dynamic Balance Scale
condition as the reference, to contrast our most grounded condition with relatively less grounded
conditions, combined, to examine our primary research question.

Ordered logistic regression, with the control condition as the reference
We first included age, gender, socio-economic status (SES, based on eligibility for free or reduced
lunch; 1 = eligible, low SES, and 0 = not eligible, high SES), and English Language Learner (ELL)
status (0 = not ELL; 1 = ELL) in the model as predictors. We included these demographic features to
heed the call that results from research on technology and education should consider and report
demographic groups in the analysis and interpretation of results (e.g. see Darling-Hammond,
Zielezinski, & Goldman, 2014). Gender, age, and ELL status were not significant predictors in the
base model, as assessed by the p-values in the model.

We then compared different models to identify goodness of fit and used the Akaike information
criterion (AIC) as a measure of the goodness of fit, because it is a robust indicator for the best model.
See the Appendix for detailed results from the ordered logistic regression.

The results revealed that students in the Balance-Analogy condition were 8.32 times more likely than
students in the Control condition to show adequate versus emerging or no learning, when all other variables
were held constant (p < .001). Likewise, the odds of students reaching either emerging or an adequate level of
learning when compared to not learning was 8.32 times greater for students in the Balance-Analogy when
compared to students in the Control condition (p < .05). Students in the Core-Principle conditionwere 4.06
times more likely than students in the Control condition to show adequate versus emerging or no learning,
when all other variables were held constant (p = .003). Students in the Dynamic Balance-Scale condition
were 2.69 times more likely than students in the Control condition to show adequate versus emerging or no
learning, when all other variables were held constant (p = .03). Given that each of the instructional
conditions was more likely to lead to learning than the Control, we next turn to examine whether our
most grounded support, as provided in the Dynamic Balance-Scale Condition, led to more learning
compared to the less-grounded conditions (Balance Analogy and Core Principle, combined).

Ordered logistic regression with the dynamic balance-scale condition as the reference
We conducted ordered logistic regression with the Dynamic Balance-Scale condition as the reference
and compared it to the Balance-Analogy and Core-Principle conditions. The results (see the
Appendix) revealed that students in the Balance-Analogy and Core-Principle conditions were 2.2
times more likely than students in the Dynamic Balance-Scale condition to show adequate versus
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emerging or no learning, when all other variables were held constant (p = .03). Likewise, the odds of
students reaching either emerging or an adequate level of learning when compared to not learning
was 2.2 times greater for students in the Balance-Analogy and Core-Principle conditions when
compared to students in the Dynamic Balance-Scale condition (p = .03).

Discussion

The current study examined, in a randomized controlled experiment, whether certain features (i.e. of
grounded support including dynamic movement) associated with the pan-balance manipulative, when
presented on a computer screen within the context of a game, impacted young students’ development of
a relational understanding of the equal sign. The findings of the current study suggest that offering young
students an opportunity to interact with a fully articulated, dynamic virtual pan balance was not as effective
as offering young students either of the two relatively less-grounded versions. By separating out the
components of the pan balance with animated, virtual versions, this study suggests that certain features
associated with the manipulative are conducive to supporting young students’ learning about the relational
meaning of the equal sign (specifically, the visual presence of the blocks and relational language) and have
advantages over the dynamic version of the virtual pan-balance model, which included observing move-
ment. However, we also acknowledge that, in the case of this intervention, we chose dynamic movement as
a distinguishing component of the most grounded condition, so we cannot make definitive claims about
whether it is the amount of groundedness or the dynamic movement that might have had an impact on
student learning.

In the remainder of this section, we further discuss some of the findings: (1) young children can
be taught the relational meaning of the equal sign in a brief intervention with a virtual pan balance;
(2) the results may have been impacted in particular ways because the instruction was delivered on
a computer; and, most significantly (3) the condition providing the most grounded support with
dynamic movement in our intervention did not lead to the most impressive learning outcomes. After
discussion of these findings, we suggest implications for teaching and learning, note some limitations
of this particular work, and end with conclusions.

Young children can be taught the relational meaning of the equal sign

Results indicated that instruction was beneficial for early elementary school students to support their
relational understanding of the equal sign. We were not the first to demonstrate positive effects of
instruction on students’ understanding of the equal sign. Thus, the findings from the current study
amplify findings from previous studies (Matthews & Rittle-Johnson, 2009; McNeil, Fyfe, Petersen,
Dunwiddie, & Brletic-Shipley, 2011; Perry, 1991; Rittle-Johnson & Alibali, 1999) that have employed
traditional one-on-one instructor-guided interventions and demonstrated that relatively small
changes in instruction can help children understand the equal sign relationally.

Considering the effects of instruction delivered on a computer

A distinguishing feature of the current intervention was that it was delivered in a multimedia environment.
According toMayer’s (Clark &Mayer, 2016; Mayer, 2005) multimedia theory of learning, information that
is presented in both auditory and visual forms in close proximity supports learning by reducing cognitive
load. It may be that introducing the visual symbol (=) and the relational audio message (“the same as”) in
sync, which was an affordance of the computer environment, likely contributed to students’ improved
performance. Some research has indicated that there are two particular advantages to computer renditions
of physical manipulatives: (1) the flexibility available in maneuvering the manipulative, which emerges
from the fact that “clumsiness” is avoided in the case of virtual manipulatives (e.g. Thompson, 1992), and
(2) the connection between the symbols and the actions (on the virtual manipulative or image) because the
feedback is immediate and can be directly linked to the object of study (Clements, Battista, & Sarama, 2001;
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Sarama & Clements, 2009). The overall effectiveness of this brief intervention could be due in part to
presenting the instruction in a multimedia format on the computer and including the presence of visual
blocks and relational language. Thus, although we acknowledge that it is not the only way, at the very least,
these findings suggest that the focus on the two sides and the relationship between the two sides may be
crucial in shifting students’ view of the equal sign as relational.

The most support may not be the best

Extending Bruner’s ideas on concrete experiences in learning mathematics, coupled with recent
findings on the concreteness-fading approach to instruction (Fyfe et al., 2015; McNeil & Fyfe, 2012),
and prior research that has employed a pan-balance (e.g. Mann, 2004), we identified types of
concreteness in a dynamic pan-balance scale. Drawing from Belenky and Schalk (2014), we inten-
tionally combined features to examine the effect of relatively more grounded interventions with less
grounded, and more idealized ones. This was important, given conflicting findings: some arguing
and providing evidence that abstract instantiations are better for promoting learning and others
claiming that concrete objects can be distracting or may exacerbate cognitive load (e.g. Uttal,
O’Doherty, Newland, Hand, & DeLoache, 2009).

Given the evidence that the pan-balance scale is an appropriate manipulative for teaching about
the equal sign and given the successful interventions that have used this manipulative, we hypothe-
sized that “idealized representations may make it more difficult for students to perform well …
Students will likely struggle to perform because of the difficulties inherent in creating appropriate,
useful, and efficient internal knowledge representations” (Belenky & Schalk, 2014, p. 34). Indeed, we
found that the most idealized (Control) condition was the worst compared to the three conditions
that incorporated grounding, but we did not find that the relatively idealized representations among
these were the least effective nor did we find that the representation including the most grounded
feature of dynamic movement was the most effective.

Because the results from our investigation did not support the prediction that the most concrete
representation of the pan-balance scale – the dynamic pan balance – should provide the best support
for students who struggle with equations with operations on both sides of the equal sign, we present
an alternative, based on Hiebert and Grouws’s (2007) construct of productive struggle. Hiebert and
Grouws, relying on Vygotsky’s (1978) discussion of the zone of proximal development, indicated
that students should gain the most when the level of difficulty presents “enough challenge, so there is
something new to figure out” (p. 388). It seems to us that, with the more grounded, Dynamic
Balance-Scale condition, there was much less for students to figure out compared to the relatively
more idealized (Core Principle and Balance Analogy) conditions. In other words, the students in the
Dynamic Balance-Scale condition had direct access to what it means to “balance” because these
students were witnessing the dynamic balancing of the scale.

Hiebert and Grouws (2007) went on to lament, “There are few principles, however, from theory or
data, that speak to the degree of structure needed to facilitate (or undermine) the productive effects of
students’ struggle” (p. 390). At the very least, we have presented data that might shed light on a principle
that speaks to the degree of structure, or groundedness, needed to facilitate the productive effects of
a student’s struggle: Given our results, we suspect that instruction that leads students to the core concepts
should be optimal in leading students to the sort of productive struggle that results in new understanding.
This implies that when we provided dynamically grounded support for students, this may have mini-
mized the work that students had to do, thus potentially limiting them from being in the position to
create new knowledge (also see Sarama & Clements 2009 work on integrated-concrete knowledge). In
other words, it may be necessary for students to engage in productive struggle (Hiebert & Grouws, 2007)
for them to develop deeper understandings of important mathematical concepts.

Finally, we found that any of the contextualized instructional interventions we offered was better
than the minimal intervention provided in the Control condition with only the symbolic problems,
where students only received feedback in terms of correctness or incorrectness of their solutions.
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This finding was not surprising, as one would expect students’ understanding of an abstract concept,
such as equivalence denoted by the equal sign, to be facilitated by some concrete representation as
opposed to solely a symbolic one (Caglayan & Olive, 2010; Sherman & Bisanz, 2009).

Implications for teaching and learning

An implication of this study is that, although models and manipulatives may be useful, educators
need to evaluate particular manipulatives’ pedagogical effectiveness, especially with respect to the
inherent ideas of those models. Examining this issue was foreshadowed by Fyfe et al.’s (2014)
concerns: “Given the widespread use and endorsement of concrete materials by researchers and
teachers alike, it is pertinent that we find optimal ways to use these materials to facilitate both
learning and transfer” (p. 22). Given the limited time and resources that teachers have in their
classrooms, it is beneficial to know what features of instruction with manipulatives offer what sorts
of potentials for learning. For teachers, the findings from our investigation indicate that, at times,
providing seemingly helpful manipulatives may not allow students to reflect and gain new under-
standing or, worse, give the illusion that students are learning when they may not be and, thereby
may potentially hinder learning. Furthermore, a model may contain different types of groundedness
and some features can be leveraged to promote greater learning than others.

As practical guidance for teachers, when extended practice with a manipulative is not possible due to
practical or other limitations, teachers should consider introducing the abstract concepts by providing
some contextualized support, but not the most grounded (i.e. with dynamic movement), and build
instruction from there to allow students to reflect on understanding the idea. Likewise, instructional
designers should also take heed: It may be more effective to not begin with a completely embellished
manipulative – even if it appears intuitively to be the most appealing. Uttal et al. (2009) and others (e.g.
Kaminski & Sloutsky, 2013; Kaminski et al., 2009) havemade strong arguments for bare-boned representa-
tions to remove distraction. It is also possible that the most grounded and embellished representation may
add to cognitive load (e.g. Chandler & Sweller, 1991). The work presented here supports this but goes
further by presenting instruction on the computer, which limited the possibility of mishandling an actual,
physical manipulative (e.g. Kaminski & Sloutsky, 2013), or the possibility of missing other crucial aspects
necessary to solve equivalence problems, for example the connection between the visual representation of
the blocks and the translation to the symbolic form (in the equations).

Limitations

One of the limitations of this work is that we focused on the relational meaning of quantitative
equivalence of the two sides of the equal sign. The complete relational meaning of the equal sign is
a complex mathematical construct and it can imply different relationships based on the format of the
problem. We focused on this meaning because it is crucial for elementary students’ performance and
understanding of arithmetic relationships and also one of the initial steps toward developing
algebraic reasoning. However, we did not explore the full extent of students’ understanding of the
equal sign or a complete relational understanding (e.g. see Jacobs et al.’s 2007 work for a broader
meaning of relational reasoning). More work on the different relational meanings would further help
in demarcating what other relational ideas the dynamic pan balance successfully promotes.

Furthermore, we did not allow students to experience concreteness fading: They did not receive
the most enriched representation and then have this faded, which others have found to produce
successful learning outcomes (e.g. Fyfe et al., 2015; Goldstone & Son, 2005). Future work in the
virtual space that starts with the relatively most grounded representation and then fades through the
analogy to a completely idealized symbol would add to the discussion of how to best use virtual
grounded manipulatives to support student understanding.

Our sample was limited. As an example, although the students were diverse in some ways (e.g.
SES), they were not diverse in others (e.g. all were from the Midwest, few were African American,
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and more second-grade students participated than third-grade students). Thus, there is a need to see
how varied types of groundedness of a manipulative provide support for learning with a wider age
range, and with other groups of students.

Additionally, we did not explicitly examine students’ prior experiences with the balance analogy.
For example, we did not have any evidence regarding students’ experiences with playing on a seesaw
or using the term “balance” in their day-to-day lives (we assumed that most students would have
experiences balancing and playing on a see-saw). Future investigations should attempt to collect this
information to examine if background knowledge or previous experience might impact receptivity to
the manipulative or the analogy. We provide a cautionary note along with this suggestion: Asking
students about their previous experiences with balancing may also sensitize students toward the
instruction and therefore needs to be handled carefully.

Conclusion

The study reported herein presents an empirical examination of a theoretical construct – types of
groundedness and their effects on learning – specifically in using a pan-balance scale to help
students understand mathematical equivalence. The findings indicated that our model that pro-
vided maximum groundedness (with dynamic movement) did not promote learning as well as the
models that were grounded in a non-dynamic manner. Thus, we posit that deeply grounded
support, while intuitive, may not be ideal in promoting optimal learning of equivalence.
Specifically, although the virtual dynamic pan-balance scale might foster learning, this more fully
explicated model might take away some of the crucial intellectual work that learners need to do to
make sense of a concept. By providing the core principle of sameness, along with a visual depiction
of quantities, or by providing that along with the analogy of balancing, may provide just the right
level of support to make sense of equivalence. In sum, providing opportunities for young students
to wrestle with equivalence – without doing all of the work for them – may be just the right balance
for helping students learn.

Notes

1. We use the term dynamic to indicate movement of the pan balance; this is different than how the term is used
elsewhere, e.g. in dynamic environments, such as in Geometer’s Sketchpad.

2. We note that we have identified four features that typically surface when using a pan-balance scale in
instruction, which we thought were likely to have an effect on student learning, although we acknowledge
that there might be other features that can have an effect on student outcomes. For example, we employ objects
that look the same and weigh the same employing different weights may have a different (or similar results), as
in Barlow and Harmon’s (2012) work.

3. We use the term manipulative broadly. Although some might argue that the term manipulative should be
reserved for things that can be handled (either with hands, or virtually, with, e.g. a mouse), following Manches
and O’Malley (2012), we use the term digital manipulative because we wanted to be transparent about the
parallels we make between the actual pan-balance scale and its digital equivalent.

4. Much of our data were skewed and not distributed normally. In those cases when data violated assumptions for
normality (Shapiro-Wilk, p < .001) and the Levene’s test for homogeneity of variances revealed unequal
variances (p < .001), we conducted non-parametric tests, including Welch’s ANOVA, McNemar’s test, and
Wilcoxon signed-rank test, which are appropriate (and robust) tests in such cases.

5. We also conducted analyses with data treated continuously and obtained comparable results. We report the
categorical data because these illustrate the variation in the extent of student learning more clearly.

6. These questions are adapted from Matthews et al. (2012).
7. These questions are adapted from the questions by Rittle-Johnson et al. (2011). A trainer read a prompt and

explained the task as described in the text.
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Appendix

Screening Questions

1. For each number sentence below, decide if the number sentence is True. In other words, does it make sense6?
After each problem, circle True, False, or Don’t Know.

Examples:

3 + 4 = 7 True False Don’t Know

3 + 4 = 12 True False Don’t Know
_________________________________________________________

a) 8 = 8 True False Don’t Know
b) 7 + 6 = 0 True False Don’t Know
c) 5 + 3 = 3 + 5 True False Don’t Know
d) 8 = 5 + 10 True False Don’t Know
e) 3 + 1 = 1 + 1 + 2 True False Don’t Know
f) 4 = 4 + 0 True False Don’t Know

2. Here are some addition problems. Solve them as best as you can. Write your answer in the blank.
a) 4 + 5 = _________
b) 13 + 15 = _________
c) 24 + 19 = _________
d) 3 + 3 + 3 = _________

3. Here are some subtraction problems. Solve them as best as you can. Write your answer in the blank.
a) 6 – 4 = _________
b) 18 – 13 = _________
c) 26 – 18 = _________
d) 9 – 3 – 3 = _________

Identifying the Two Sides of the Equation

Pretest

1. This problem has two sides. Circle the choice that correctly breaks the problem into two sides7:

5 = 3 + 2

2. This problem has two sides. Circle the choice that correctly breaks the problem into two sides:

4 + 1 = 2 + 3

a) b)
Side A Side B Side A Side B
5 = 3 5 3 + 2

c) d)
Side A Side B Side A Side B
5 = 3 + 2 5 = 3 + 2 3 + 2 = 5

e) ?

a) b)
Side A Side B Side A Side B
4 + 1 = 2 4 + 1= 2 + 3

c) d)
Side A Side B Side A Side B

4 + 1 = 2 4 + 1 = 2 + 3 4 + 1 2 + 3
e) ?
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Ordered Logistic Regression Analysis on Levels of Learning at the Posttest, with the Control condition as Reference

Ordered Logistic Regression Analysis on Levels of Learning, with the Most Grounded (Dynamic Balance Scale Condition)
as the Reference

95% CI

Predictor Variable β se t p Odds Ratio 2.5 97.5

Dynamic Balance Scale 0.991 0.476 2.083 0.037* 2.695 1.074 7.005
Balance Analogy 2.119 0.488 4.339 0.000* 8.324 3.274 22.381
Core Principle 1.403 0.480 2.924 0.003* 4.067 1.615 10.678
Eligible For Free Lunch -1.182 0.384 -3.081 0.002* 0.307 0.142 0.643
Age 0.127 0.239 0.532 0.595 1.136 0.710 1.819
AIC ** = 305.07

** Akaike value for the model; * p < .05.
The Control group and higher SES (non-eligibility for reduced lunch) group are references in the model.

95% CI

Predictor Variable β se z p Odds Ratio 2.5 97.5

Condition
Dynamic Balance Scale 1.869 0.821 2.278 0.023* 6.484 1.541 44.911
Balance Analogy 2.787 0.813 3.428 0.001* 16.237 3.973 111.642
Core Principle 2.030 0.816 2.487 0.013* 7.615 1.831 52.427
Student Background
Eligible For Free Lunch -1.024 0.448 -2.287 0.022* 0.359 0.147 0.859
Age 0.228 0.284 0.804 0.421 1.256 0.720 2.204

* p<.05.

95% CI

Predictor Variable β se t p Odds Ratio 2.5 97.5

Balance Analogy and Core Principle, combined 0.792 0.380 2.085 0.037* 2.208 1.054 4.696
Control -0.965 0.474 -2.035 0.042* 0.381 0.147 0.953
Eligible For Free Lunch -1.129 0.378 -2.984 0.003* 0.323 0.151 0.672
Age 0.200 0.234 0.855 0.392 1.222 0.772 1.941
AIC** = 305.63

** Akaike information criterion (AIC) value for the model; * p < .05.
The groups with the most support and higher SES (non-eligibility for reduced lunch) were references in this model.
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